TVS Diodes Transient Voltage Suppression Diodes

SPC1 Series (1 kA)

Description

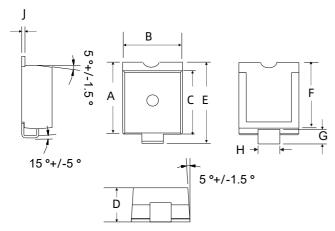
The SPC1 in SMTO-218 package provide the enhanced quality, easy manufacturing than typical through-hole TVS components. They can be connected in series and/or parallel to create various capability and flexible protection solutions.

Applications

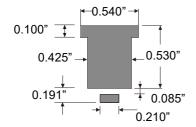
- Communication Equipment
- Security & Protection
- Industrial Control Equipment
- Power Supply
- Automotive Electronics
- New Energy
- Lightning Protection

Functional Diagram

Bi-Directional


Features

- Bi-directional
- Low clamping and slope resistance
- For automatic pick and place assembly and reflow process to reduce the manufacturing cost and increase the soldering quality compared to axial leads package
- Patent pending package design
- Meet MSL level 1, per J-STD-020, LF Maximum peak of 245 °C
- Pb-free E3 means 2nd level interconnect is Pb-free and the terminal finish material is tin (Sn)
- ESD follow IEC 61000-4-2
- Surge protection of lightning in accordance with IEC61000-4-5
- Halogen free and RoHS compliant
- Tube or tape and reel pack options available


+86 592-571-5838 www.SETsafe.com www.SETfuse.com E-mail: sales@SETfuse.com

All Rights Reserved by Xiamen SET Electronics Co., Ltd. 2024-2026 V1.1

Package Outline Dimensions (SMTO-218)

Note: Coplanarity of solder side is controlled within 0.10 mm

Mounting Pad Layout (Inch)

0hl	Millim	eters	Inches			
Symbol	Min.	Max.	Min.	Max.		
А	15.78	16.63	0.621	0.655		
В	13.43	15.09	0.529	0.594		
С	13.83	14.24	0.544	0.561		
D	6.94	7.24	0.273	0.285		
Е	17.82	18.72	0.702	0.737		
F	14.40	14.76	0.567	0.581		
G	1.88	2.84	0.074	0.112		
Н	4.89	5.65	0.193	0.222		
J	0.72	0.85	0.028	0.033		

Maximum Ratings and Characteristics

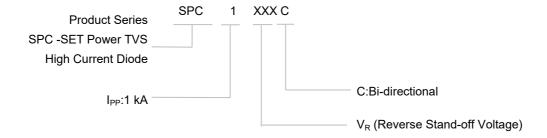
(Ratings at 25 °C ambient temperature unless otherwise specified.)

Parameter	Symbol	Value	Unit
Storage Temperature Range	T _{STG}	-55 to 150	°C
Operating Junction	TJ	-55 to 125	°C
Current Rating (8/20 µs wave)	I _{PP}	1	kA

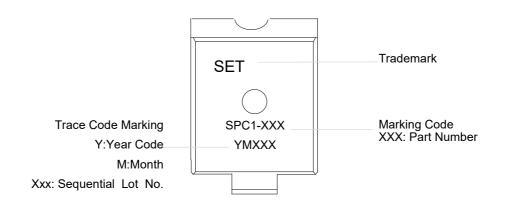
Physical Specifications

Weight	Contact manufacturer
Case	Epoxy molding compound encapsulated
Terminal	Tin plated lead, solderability per MIL-STD-202 Method 208

TVS Diodes


Transient Voltage Suppression Diodes

SPC1 Series (1 kA)


Environmental Specifications

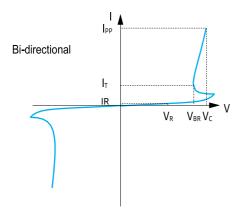
Temperature Cycling	JESD22-A104			
HTRB	JESD22-A108			
MSL	JESDEC-J-STD-020, Level 1			
H3TRB	JESD22-A101			
RSH	JESD22-B106			

Part Numbering System

Marking

TVS Diodes

Transient Voltage Suppression Diodes


SPC1 Series (1 kA)

Electrical Characteristics (T_A=25 °C unless otherwise noted)

Part Number	Stand-off Voltage V _R	Voltage	Max. Reverse	Breakdown Voltage		Current			Voltage V _{CL} Current (I _{PP})	Max. Temp Coefficient	
		Leakage I _R @V _R			I _T	V _{CL}	I _{PP} (8/20 μs)	Ι _{ΡΡ} (10/350 μs)	of V _{BR}	0 Bias 10KHz	
			Min	Max			Min	Typical			
	(V)	(μΑ)	(')	V)	(uA)	(V)	(A)	(A)	(%/°C)	(nF)	
SPC1-240C	240	10	250	285	10	340	1000	200	0.1	2.2	
SPC1-380C	380	10	401	443	10	520	1000	100	0.1	2.2	
SPC1-430C	430	10	440	490	10	625	1000	100	0.1	2.2	

Transient Voltage Suppression Diodes

I-V Curve Characteristics

Performance Curve for Reference(T_A=25 °C unless otherwise noted)

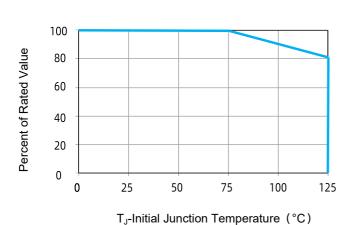


FIGURE 1 Peak Power Derating

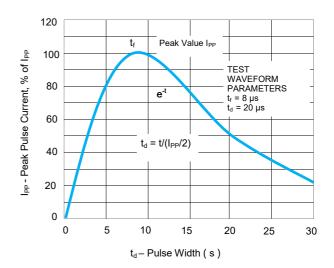
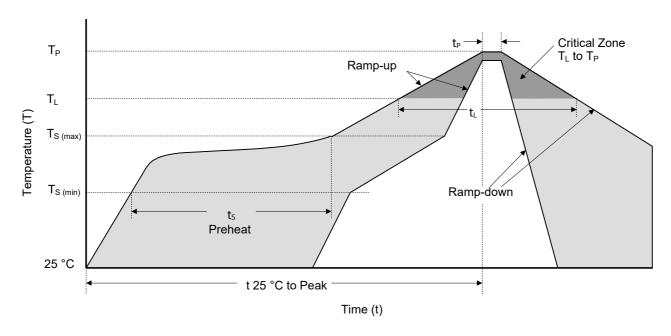



FIGURE 2 Pulse Waveform

Soldering Parameters

Reflowing Condition

Reflow Soldering	Reflow Soldering Parameters					
	Temperature Min (T _{S (min)})	150 °C				
Pre-heat	Temperature Max (T _{S (max)})	200 °C				
	Time (min to max) (t _s)	60 ~ 120 seconds				
Average Ramp Up Rate (L	3 °C / second max.					
T _S (max) to T _L	T _S (max) to T _L Ramp-up Rate					
D. 6	Temperature (T _L) (Liquidus)	217 °C				
Reflow	Time (min to max) (t∟)	60 ~ 150 seconds				
Peak Tempo	erature (T _P)	245 ^{+0/-5} °C				
Time of within 5 °C of Act	ual Peak Temperature (t _P)	20 ~ 40 seconds				
Ramp-do	own Rate	6 °C / second max.				
Time from 25 °C to	Time from 25 °C to Peak Temperature					
Do Not	245 °C					

Wave Soldering (Solder Dipping)

Peak Temperature	260 °C+0 /- 5 °C
Dipping Time	10 seconds
Soldering Number	1 time

TVS Diodes Transient Voltage Suppression Diodes

SETsafe | SET fuse

SPC1 Series (1 kA)

Packaging Information

Reel Size	Symbol	Inches	Millimeters
D1	D	Ф13.0	Ф330.0
D W1	D ₁	Ф0.520±0.008	Ф13.2±0.2
Direction of Feed	W ₁	1.417±0.079	36.0±2.0

Part Number	Weight (Typical)	Packaging Option	QTY's	
SPC1-XXXXC	4.33 g	Tape & Reel – 32 mm/13" tape	400 PCS	

TVS Diodes

Transient Voltage Suppression Diodes

Glossary

Item	Description
Vc	Clamping Voltage Voltage across TVS in a region of low differential resistance that serves to limit the voltage across the device terminals.
V _R	Reverse Stand-off Voltage Maximum voltage that can be applied to the TVS without operation. NOTE: It is also shown as V_{WM} (maximum working voltage (maximum d.c. voltage)) and known as rated stand-off voltage (V_{so}).
I _R	Reverse Leakage Current Current measured at $V_{\rm R.}$ NOTE : Also shown as $I_{\rm D}$ for stand-by current.
V _{BR}	Breakdown Voltage Voltage across TVS at a specified current I_T in the breakdown region.
I _{PPM}	Rated Random Recurring Peak Impulse Current Maximum-rated value of random recurring peak impulse current that may be applied to a device.
$P_{M(AV)}$	Rated Average Power Dissipation Maximum-rated value of power dissipation resulting from all sources, including transients and standby current, averaged over a short period of time.
P _{PPM}	Rated Random Recurring Peak Impulse Power Dissipation Maximum-rated value of the product of rated random recurring peak impulse current (I_{PPM}) multiplies by specified maximum clamping voltage (V_{C}).
Сл	Capacitance Capacitance across the TVS measured at a specified frequency and voltage.
V _{FS}	Peak Forward Surge Voltage Peak voltage across an TVS for a specified forward surge current (I_{FS}) and time duration. NOTE: Also shown as V_{F} .
I _{FS}	Forward Surge Current Pulsed current through TVS in the forward conducting region. NOTE : Also shown as $I_{\rm F.}$
$a_{V(BR)}$	Temperature Coefficient of Breakdown Voltage The change of breakdown voltage divided by the change of temperature.
I _{PP}	Peak pulse Current Peak pulse current value applied across the TVS to determine the clamping voltage $V_{\mathbb{C}}$ for a specified wave shape.
I T	Pulsed D.C. Test Current Test current for measurement of the breakdown voltage V_{BR} . This is defined by the manufacturer and usually given in milliamperes with a pulse duration of less than 40 ms. NOTE: Also shown as I_{BR} .

--(GB-T 18802.321 / IEC 61643-321 / JESD210A)

TVS Diodes Transient Voltage Suppression Diodes

SPC1 Series (1 kA)

Usage

- 1. TVS must be operated in the specified ambient temp.
- 2. Do not clean the TVS with strong polar solvent such as ketone, esters, benzene and halogenated hydrocarbon, to avoid damaging the encapsulating layer.
- 3. Please do not apply severe vibration, shock or pressure to TVS, to avoid element cracking.

Replacement

- 1. If TVS is visually damaged, please replace it.
- 2. TVS is a non-repairable product. For safety sake, please use equivalent TVS for replacement.

Storage

- 1. Storage Temp. Range: (-55 to 150) °C.
- Do not store the TVS at the high temp., high humidity or corrosive gas environment, to avoid influencing the solder- ability of the lead wires. The product shall be used up within 1 year after receiving the goods.

Environmental Conditions

- 1. TVS should not be exposed to the open air, nor direct sunshine.
- 2. TVS should avoid rain, water vapor or other condition of high temp. and high humidity.
- 3. TVS should avoid sand dust, salt mist, or other harmful gases.

Max. Typical Capacitance of TVS

The typical capacitance of TVS is listed in the specifications. Designers may refer to it when designing TVS in High frequency circuit.

Installation Mechanical Stress

- 1. Do not knock TVS when installing, to avoid mechanical damage.
- 2. Please do not apply severe vibration, shock or pressure to TVS, to avoid surface resin or element cracking.

SPC1 Series (1 kA)

TVS Diodes

Transient Voltage Suppression Diodes

Transient Voltage Suppressor (Surface Mount) Features Overview

	1	\								/	\
	DO-221AC	0	0	0	0	0	SMA6L	0	0	0	
be	DO-214AA	0	0	0	0	0	0	SACB	SMBJ	P6SMB	
Package Type	DO-214AB										Series
ckaç	DO-214AC	0	0	SMAJ	P4SMA	SMA6J	0	0	0	0	ies
Ъа	SOD-123FL	SMF	P4SMF								
	SMTO-218	0	0	0	0	0	0	0	0	0	
Proc	luct Outline (mm)	1.30	3.65		5.04		5.20 00 7	5.40 09°E			
V F Reverse	R / V _{WM} (V) e Stand-off Voltage	5.0 ~ 250	5.0 ~ 85	5.0 ~ 440	5.8 ~ 468	5.0 ~	- 250	5.0 ~ 50	5.0 ~ 440	5.8 ~ 512	
(10 Rate Pov	PPPM (W) 0/1000 µs) bd Peak ImPulse wer Dissipation	200		400		600		500	600		
PPM (Rated Pe	kA)(8/20 μs) eak ImPulse Current										
O Tei	perating mperature (°C)	-55 to +150									

SPC1 Series (1 kA)

Transient Voltage Suppressor (Surface Mount) Features Overview

	1	\ \								,	^
	DO-221AC	0	0	0	0	0	0	0	0	0	
be	DO-214AA	0	0	0	0	0	0	0	0	0	
Package Type	DO-214AB	SMCJ	1.5SMC	3.0SMCJ	SMDJ	5.0SMDJ					Series
ckag	DO-214AC	0	0	0	0	0	0	0	0	0	ies
Ра	SOD-123FL										
	SMTO-218	0	0	0	0	0	SPC1	SPC3	SPC6	SPC10	\rightarrow
Prod	duct Outline (mm)	7.94 7.94					18.27				
V Revers	R / V _{WM} (V) se Stand-off Voltage	5.0 ~ 440	5.8 ~ 512	5.0 ~	- 440	12 ~ 170	380 / 430	66	58 ~ 76	58 ~ 86	
(1 Rat Po	P _{PPM} (W) 0/1000 μs) ed Peak ImPulse wer Dissipation	1500 3000 5000)		
PPM Rated P	(kA)(8/20 µs) Peak ImPulse Current	0					1	3	6	10	
	Operating mperature (°C)	-55 to +150						-55 to	+125		

SPC1 Series (1 kA)

Transient Voltage Suppressor (Axial Lead) Features Overview

	/	lack															\
	DO-201	0	0	0	1.5KE	LCE	0	0	0	0	0	0	0	0	0	0	
Package Type	DO-41	P4KE															Series
	DO-15	0	SAC	P6KE	0	0	0	0	0	0	0	0	0	0	0	0	
	P600	0					5KP	15KPA	20KPA	30KPA							
Ra	dial lead	0	0	0	0	0	0	0	0	0	SPCL1	SPCL3	SPCL6	SPCL10	SPCL15	SPCL20	
Product Outline (mm)		4.65 00 ± 0.2 ± 0.2 ± 0.5 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.	Ф3.10 02 °С	- 57.50	Φ5.05 98 8	59.15	Ф8.85 98 8 91.28			20.48	17.00	20.48		14.50	22.00		
V R/ N Reverse Sta	/ _{WM} (V) ind-off Voltage	5.8 ~ 468	5.0 ~ 50	5.8 ~ 512	5.8 ~ 512	6.5 ~ 90	5.0 ~ 250	17 ~ 280	20 ~ 300	28 ~ 360	76	15 ~ 430	30 ~ 430	15 ~ 530	58 ~ 380	16 ~ 76	
PPP (10/10 Rated Pe Power D	M (W) 000 µS) ak ImPulse dissipation	400 500 600 1500					5000	15000	20000	30000		0					
PPM (kA) Rated Peak In)(8/20 µs) mPulse Current	ot entremental and the second								1	3	6	10	15	20		
Temp	rating erature °C)	-55 to +150								-55 to +125							